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Infinite Products for Power Series
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An algorithm is introduced and shown to lead to a unique infinite product
representation for a given formal power series A(z) with A(O) = 1. The infinite
product is

n=!

where all bn# 0, rnE 1\\1, and rn+ 1> rn' The degree of approximation by the polyno
mial (1 + btz") ... (1 + bnz'") is also considered. © 1989 Academic Press. Inc.

1. INTRODUCTION

Let 2' = F( (z» denote the field of all formal Laurent series

ex:

H=V

in an indeterminate z, and with coefficients Cn all lying in a given field F.
Although the main case of importance here occurs when F is the field C of
complex numbers, certain interest also attaches to other ground fields F,
and all results below hold for arbitrary F.

If Cv # 0, we call v = v(A) the order of A, and define the norm (or valua
tion) of A to be

Letting v(o) = +00, 11011 = 0, one then has (cf. Jones and Thron
[2, Chap. 5]):

(1.1) v(AB) = v(A) + v(B),
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v (~) = v(A) - v(B)
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if B#O,
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and

277

v(iXA + PB) ~ min(v(A), v(B))

with equality when v(A) # v(B); and

for 0# iX, 0 # PE F,

(1.2) IIAII ~O, IIAII =0 iff A=O, IIABII = IIAIIIIBII,

IliXA +PBII ~max(IIAII, IIBII) for O#iX, O#pEF,

with equality when IIAII # IIBII.

By (1.2), the above norm is non-archimedean and leads to an ultrametric
distance function p on 2, with p(A, B) = IIA - BII. It is then essentially
"folk-lore" that 2 forms a complete metric space under p (cf. Jones and
Thron [2, Chap. 5], and the similar theorem for formal power series rings
in Zariski and Samuel [4, Chap. VII]). Our main attention below will be
confined to the closed subspace &i c 2 consisting of all formal power
series 1+L:~ I cnzn, our main result being:

(1.3) THEOREM. Every A E &i with A # 1 has a unique convergent product
representation (relative to p) of the form

00

A = n (1 +bnzrn ),
n~l

This theorem is quite analogous to one on continued fraction expansions
of elements of &i, due to Leighton and Scott [3], of the form

b z'I b zr2 b zr3
A=l+-I- _2__3_

1 + 1 + 1 +

later called C-fractions.

In the final section, a few remarks are made about ordinary convergence
to complex analytic functions.

2. CONVERGENCE AND ApPROXIMAnON

If l#AE&i, let AI=A=l+blz'IA~ where A~E&i and rIEN,
0# bl E F. If An = 1+ bnzrnA~ has already been defined, with 1 # A~ E &i,
0# bn E F, then define

640/59/3-3



278 KNOPFMACHER AND KNOPFMACHER

where A~+IEglII' rn+l>rn, and O#-bn+IEF, if A~#-1. If A~=l, let
An + 1= 1 and stop the algorithm. Then

n

A = Al = (1 +bIZ'J)A 2 = ... = An+ 1 TI (1 + bizr,).
i~ I

If the procedure does not terminate with some An + I = 1, then

as n --+ 00.

Thus limn_ oo An+ l =l, and then A=TI~d1+bizri), relative to the
metric p on 2.

If Pn= Pn(z) = (1 + btzY[)··· (l + bnzrn ), we also have

3. UNIQUENESS OF REPRESENTATION

(3.1) LEMMA. Any product TIn;;, I (1 + dnzSn ) with 0 #- dnE F, SnE N, and
Sn+1 >sn' converges relative to p to an element B#-l in &'1 with
B= 1+dlzS1B', B'E~.

where

N+K
R N •K TI (l+dnzSn)-1=dN+IZsN+1R't.,K

n=N+ I

for R't..K E &I, since (s N) is a strictly increasing sequence. Thus

V(iQN+ K- iQN) = V(iQN) + v(RN,K) = SN+ I> N --+ 00

as N --+ 00, independently of K~ 1. Therefore, if the product is infinite, then
(iQN) forms a Cauchy sequence and converges relative to p to an element
B of the complete metric space 2. Since the convergence is relative to p,
v(B - iQN) > SI for N sufficiently large, and so B = 1 + d I ZSI B' for B' E &1 ,

because iQ N = 1 + RO,N = 1+ dIZS1R~,N'
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Now suppose that A=Dn;>1 (1+bnzrn )=Dn;>1 (l+dnzSn
) where

O=/:bn, O'#dnEF, 'nosnEN, and 'n+I>'n, sn+l>sn' Then Lemma 3.1
implies that

for A',B'E~.

Hence bl = dl , 'I = SI' and we obtain Dn;> 2 (1 + bnzrn
) = Dn;> 2 (1 + dnzSn

).

In the same way, b 2 = b2 and '2 = S2' and thus we successively obtain
bn= dn, 'n = Sn for all n.

Rema,ks. It is interesting to note from the general form of the product
for A, and from simple examples like

(1 + z)(l + 2z) = (1 + 3z)(1 + 2z2 )(1- 6z 3
) •••,

that "most" polynomials have infinite representations as in Theorem 1.3,
the exceptions being those of the general type Pn of Theorem 1.3. For poly
nomials of type Pn' the above algorithm then provides an actual method for
determining all the roots.

It is also notable that an entire function without any ordinary zeros, like

and in general every element A E ~, acquires a new set (usually infinite) of
"pseudo-zeros" as the result of Theorem 1.3. For example, -1, ±.J'=2~
31/3, 31

/
3

( -! ± !J=3), ... for eZ
• Only in rare cases would these pseudo

zeros be genuine zeros. Nevertheless, a study of the relationship between
properties of the pseudo-zeros and properties of A or of its power series
coefficients might perhaps prove interesting. As two little comments in this
direction, we note:

(i) If A = 1+blzrl + b2 zrz + "', where 'I < '2' bi =/: 0, then
A = (1 + b l z'l)( 1+ b2 z rz

) "', where, however, the subsequent factors of the
product nee~ not necessarily conform to this initial pattern.

(ii) For a simple rational function (1 - bzr)- 1, with b '# 0, , EN, the
pseudo-zeros are given explicitly by the Euler-type identity which occurs in
the proof of Proposition 4.1 below.

4. ANALYTIC FUNCTIONS AND ORDINARY CONVERGENCE

In the important case when F is the field C of complex numbers, the
main interest of ft' or ~ lies in their close connection with ordinary
complex meromorphic or analytic functions at the origin. As in the analytic
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theory of continued fractions (cf. Jones and Thron [2, Chap. 5], and
Leighton and Scott [3]), it would be interesting to investigate the ordinary
(uniform, if possible) convergence of the earlier approximation polynomials
Pn(z) to an actual analytic function A(z).

Unfortunately, even the well-developed theory of continued fractions
seems to be only partially successful in this genuinely analytic direction,
seeming to work best only for special classes of functions and fractions. In
effect, much of the theory of continued fraction approximations still seems
to rest largely on a formal "correspondence" theory analogous to
Theorem 1.3. Thus the present type of approximation and representation
should probably be viewed in a similar light.

We therefore conclude first by merely mentioning that Jones and Thron
[1,2] have established at least one general theorem on uniform
convergence to meromorphic functions under suitable conditions, which
in principle is just as applicable to product as to continued fraction
approximations (cf. Theorem 4 of [1], or Theorem 5.11 of [2]).

Second, we note that there remains the possibly interesting problem of
characterizing the types of products in Theorem 1.3 which correspond to
rational functions A E F(z). In the analogous case of the C-fraction
expansions of elements of ~, due to Leighton and Scott [3], rational
functions are characterized by finite continued fractions. However, since
finite expansions as in Theorem 1.3 yield polynomial functions, a charac
terization of non-polynomial rational as well as most polynomial functions
would therefore have to involve infinite products, satisfying possibly certain
stronger growth conditions on the exponents rn' As a partial result in this
direction we note:

(4.1) PROPOSITION. Let A E &L A # 1, with unique product representation

00

A = n (l +bnzrn
).

n~l

If bn+ 1 =b~ and rn+ 1 =2rn' for all n sufficiently large, then A E F(z).

Proof This follows easily from the Euler-type identity

n°° 2n-l 1
(I+y )=-

n~ 1 1-Y
(v(y»O).

(To establish this identity, note that the equation I+w=(1-w2 )/(1-w)
(w # 1) leads, as for real numbers, to

N 2
n

- 1 I_ y 2 I_ y 2N l_y2N

n (1+Y ) = 1_ Y . ... . 1 _ y2N I = 1 _ Y .
n~l
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The identity then follows, since V(yk) =kv(y) -+ 00 as k -+ 00, I.e. yk -+ 0
relative to p.

Note added in proof When F = C, some analytical properties of the above product and
combinatorial properties of its coefficients have been discussed by J. F. Ritt (Math. Z. 32
(1930), 1-3) and by H. Gingold, H. W. Gould and M. E. Mays (Uti/itas Math. 34 (1988),
143-161), respectively.
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